
Chapter 2
FuncঞonaѴ Programming in Python

If you’ve reached this point, you shouѴd be famiѴiar with the basics of programming in python,
in either an interpreter seমng or in a .py script which you then run. Within these scripts, you
can write muѴঞpѴe Ѵines of code which set variabѴes, manipuѴate them, and uѴঞmateѴy print or
otherwise save vaѴues of interest.

The next step forward in the abstracঞon of how your code wiѴѴ be structured is known as
funcࢼonaѲ programming. This refers to the coѴѴecঞon of code into specific seѴf defined
funcঞons, with biteŊsized tasks that you can verify are working properѴy Őunit tesঞngő and
which aѴѴow for easy debugging. Later, we wiѴѴ discuss an objectŊoriented approach to Python
deveѴopment though the use of claUUeU , but even within these Ѵater frameworks, the
fundamentaѴ unit of code is sঞѴѴ the funcঞon Őthough it wiѴѴ go by the name meVhod in the
OOP styѴeő.

You aѴready have pѴenty of experience using funcঞons. When we import Ѵibraries Ѵike nWmR[or
maVRloVlib we are imporঞng funcࢼons and cѲasses other peopѴe have wri�en that are stored
in those Ѵibraries. When I caѴѴ

imRoTV nWmR[aU nR

Z = nR.linURace(0,2*nR.Ri,100)
m[_YaXe = nR.Uin(Z)

both nR.linURace() and nR.Uin() are funcঞons that someone on the nWmR[team wrote
down and pѴaced in the Ѵibrary. We know how to use these funcঞons even though we didn’t
write them because we read the documentaࢼon, i.e.,

helR(nR.\eToU)

HelR on bWilV-in fWncVion \eToU in modWle nWmR[:

\eToU(...)
 \eToU(UhaRe, dV[Re=floaV, oTdeT='C')

 ReVWTn a neY aTTa[of giXen UhaRe and V[Re, filled YiVh \eToU.

 PaTameVeTU

 UhaRe : inV oT VWRle of inVU
 ShaRe of Vhe neY aTTa[, e.g., ``(2, 3)`` oT ``2``.
 dV[Re : daVa-V[Re, oRVional
 The deUiTed daVa-V[Re foT Vhe aTTa[, e.g., `nWmR[.inV8`. DefaWlV iU
 `nWmR[.floaV64`.
 oTdeT :]'C', 'F'_, oRVional, defaWlV: 'C'
 WheVheT Vo UVoTe mWlVi-dimenUional daVa in ToY-majoT
 (C-UV[le) oT colWmn-majoT (FoTVTan-UV[le) oTdeT in
 memoT[.

 ReVWTnU

 oWV : ndaTTa[
 ATTa[of \eToU YiVh Vhe giXen UhaRe, dV[Re, and oTdeT.

The heѴp funcঞon above spits out a Ѵot of text, but the most reѴevant bit is at the top: The
documentaঞon shows us Ɛő what the funcঞon does and outputs, Ƒő what inputs it needs and
in which order Őand what data type these input shouѴd beő, and ƒő some exampѴes of its use.

In this secঞon, we wiѴѴ be taѴking aѴѴ about funcঞons: how to define them, how to document
them, best pracঞces in impѴemenঞng them, and more. So Ѵets dive in!

2.1 Defining Funcঞons

Defining funcঞons in python is easy. The absoѴute simpѴest funcঞon I couѴd define wouѴd Ѵook
Ѵike this:

def m[_fWncVion():
 RaUU

In the above exampѴe, we see that the speciaѴ word def teѴѴs Python we are defining a
funcঞon. We give it a name Ő m[_fWncVion in this caseő foѴѴowed by parenthesis containing
arguments ŐI have not suppѴied anyő. We end with a coѴon, the same way we wouѴd for a Ѵoop
or condiঞonaѴ statement. Then, aѴѴ code associated with my funcঞon gets indented Őagain, just
Ѵike a Ѵoop or condiঞonaѴ statementő.

You’ѴѴ noঞce I’ve put the word RaUU into my funcঞon. This usefuѴ word is speciaѴ in Python
Ődon’t use it as a variabѴe nameő and it teѴѴs the interpreter to just keep on waѴkin, nothing to
see here. It’s a perfect thing to add when you want to define a funcঞon Őremind yourseѴf you
need itő but don’t want to add any code to it yet.

But that’s boring! Let’s add some code now. A common task in AstronomicaѴ Python is to Ѵoad
a series of fiVU image fiѴes in a directory on our computer and stack up aѴѴ the images into
some storage container ŐѴike a muѴঞdimensionaѴ numpy arrayő, as weѴѴ as “extraĿ data from the
fiVU headers Ѵike object name, exposure ঞme, etc. ThankfuѴѴy, the aUVToR[Ѵibrary has a
heѴpfuѴ funcঞon for reading in data.

However, the aUVToR[funcঞons we’ѴѴ use are speciaѴized for generaѴ use. But for our specific
program, we might want to make it easy to Ѵoad up a whoѴe directory exactѴy how we know we
want to in onѴy a singѴe Ѵine of code.

In short, we want what’s caѴѴed a wrapper. A funcঞon that combines severaѴ other funcঞon
caѴѴs in a usefuѴ way Őfor us as Ѵeastő.

I’ѴѴ start by defining the base sheѴѴ of the funcঞon:

def load_diTecVoT[_imageU(RaVh):
 RaUU

I’ve given the funcঞon a recognizabѴe name that teѴѴs us what the funcঞon does ŐѴoads images
in a directoryő, and I’ve specified the first argument to the funcঞon. Arguments are, much Ѵike
in a mathemaঞcaѴ funcঞon Ѵike sine, what gets fed into the funcঞon in order to faciѴitate the
caѴcuѴaঞon. In this case, that’s a path Őstringő represenঞng the Ѵocaঞon of the directory on our
hard drive.

Important note! When we set the name “path”, this is the variabѴe name we’ѴѴ use inside our
funcঞon. It is onѴy internaѴ to our funcঞon, and users can suppѴy any variabѴe they want (of
any name) to our funcঞon. Whatever is in sѴot number 1 of the argument Ѵist wiѴѴ be
assigned the temporary variabѴe “path” whiѴe it’s inside the funcঞon.

2.1.1 Wriঞng Documentaঞon

When we printed out the documentaঞon above for the nWmR[funcঞons, there was a Ѵot
there. When wriঞng funcঞons for our own code, we generaѴѴy do not need to be that intense
Ō documentaঞon depth shouѴd scaѴe with how many peopѴe wiѴѴ use a given code Ő nWmR[is
used by hundreds of thousands of users, so it needs rock soѴid documentaঞonő. However we
shouѲd aѲways at Ѳeast somewhat document our code. Trust me. Ask anyone who has buiѴt
researchŊgeneraঞng code Ői.e., hundreds of funcঞons, thousands of Ѵines of code, buiѴt over
the course of ѵ months to ƒ years, ishő can teѴѴ you that you need documentaঞon, so that even
futureŊyou can understand what you were trying to do.

To add documentaঞon to your funcঞon, we use tripѴe quotes as foѴѴows:

def load_diTecVoT[_imageU(RaVh):
 '''
 LoadU a diTecVoT['U YoTVh of imageU inVo conXenienV UVoTage WniVU.
 ReSWiTeU aUVToR[.io.fiVU.
 '''
 RaUU

Now, we can see that if I run the helR() command on my funcঞon, I get this:

helR(load_diTecVoT[_imageU)

BasicaѴѴy, I can now see my funcঞon’s documentaঞon and know what it does.

HelR on fWncVion load_diTecVoT[_imageU in modWle __main__:

load_diTecVoT[_imageU(RaVh)
 LoadU a diTecVoT['U YoTVh of imageU inVo conXenienV UVoTage WniVU. ReSWiTeU

2.1.2 Formaমng your Documentaঞon + Best Pracঞces

What I did above technicaѴѴy counts as documentaঞon. But there are a few extra things we
reaѴѴy need to make it usefuѴ. Let’s improve our documentaঞon:

def load_diTecVoT[_imageU(RaVh):
 '''
 LoadU a diTecVoT['U YoTVh of imageU inVo conXenienV UVoTage WniVU.
 ReSWiTeU aUVToR[.io.fiVU.
 NoVe: All ImageU in diTecVoT[mWUV be of Uame UhaRe.

 PaTameVeTU

 RaVh: UVT
 RaVh Vo Vhe diTecVoT[[oW YiUh Vo load, aU a UVTing.

 ReVWTnU

 image_UVack: aTTa[_like
 A UVack of all imageU conVained in Vhe diTecVoT[.
 ATTa[of UhaRe (N,X,Y) YheTe N iU Vhe nWmbeT of imageU,
 and X,Y aTe Vhe dimenUionU of each image.
 image_dicV: dicV
 A dicVionaT[conVaining headeTU foT each image, Vhe ke[U
 aTe Vhe Uame aU Vhe indiceU of Vhe coTTeURonding
 image in Vhe image_UVack
 '''
 RaUU

CooѴ, now our funcঞon is much be�er defined. We know what needs to be input, what data
types they need to be, and even have a word of warning ŐonѴy works on directories where the
fits images are the same dimensionő. I reaѴized this wouѴd be true when wriঞng the
documentaঞon for image_UVack , so wriঞng documentaঞon at Ѵeast to this ѴeveѴ up front can
someঞmes heѴp cѴarify what you are trying to do with a funcঞon in the first pѴace and catch
potenঞaѴ pi�aѴѴs Őwe’ѴѴ want to catch that size issue within the actuaѴ code tooő.

You may have noঞced that I have a very reguѴar system for showing the parameters and return
vaѴues, i.e., name : dV[Re foѴѴowed by an indented Ѵine with the descripঞon. You need not do
exactѴy this when you’re first starঞng, and can do anything within the tripѴe quotes in terms of

formaমng. However, as we move into higher ѴeveѴ programming, you may write code that you
have to host on Github and which needs an actuaѴ documentaঞon website Ѵike a
ReadVheDocU.io . You may have used such a site for research code you’ve downѴoaded and
used. These sites are buiѴt using automaঞc frameworks, e.g., SRhinZ , which scrape your enঞre
codebase and buiѴd the site for you automaঞcaѴѴy. Super convenient! But, these tooѴs require
your documentaঞon be forma�ed a certain way. So, it’s never too earѴy to get into the habit of
wriঞng documentaঞon recognizabѴe by these tooѴs.

2.1.3 How detaiѴed is too detaiѴed?

Someঞmes we’re just doing some quick expѴoratory data anaѴysis ŐEDAő and are wriঞng a
quick funcঞon to extract and pѴot some quick data. Wriঞng good documentaঞon takes ঞme,
and there’s a tradeoff in efficiency if you stop to write good documentaঞon for every funcঞon.

PersonaѴѴy, I have two Ѵines in the sand that I use to determine the type of documentaঞon to
write. For EDA and other quick script type things ŐessenঞaѴѴy, pѴaying around, and things that
won’t end up in the actuaѴ paperő, I don’t bother with documentaঞon or I write a quick oneŊ
Ѵiner. For my own research code, which wiѴѴ produce outputs I pubѴish in a paper, I write
documentaঞon that is at minimum a detaiѴed descripঞon, and if I pѴan to pubѴish my code
aѴong with the paper, then I use fuѴѴ documentaঞon as shown above. If you are wriঞng code to
be used by others, then it is absoѲuteѲy essenࢼaѲ to write fuѴѴ scaѴe, forma�ed documentaঞon.

2.2 Back to Our Funcঞon: Checking the Input

O[en, a usefuѴ first step in wriঞng a funcঞon is confirming that the inputs adhere to the data
types, dimensions, or other ruѴes we’ve estabѴished in our documentaঞon. Why? Because if
inputs do not meet these standards, our funcঞon may not operate as intended. A common
saying in the industry is “garbage in, garbage outĿ. O[en, we trust that a user Őor uső entering
bad data Őor wrongѴy shaped, or typed, dataő into our funcঞon wiѴѴ cause a catastrophic faiѴure
which causes the code to stop and throw an error. For exampѴe, having two images of
different dimensions in our directory wiѴѴ throw an error when we teѴѴ numpy to stack those
arrays.

But what is even more insidious, and harder to track down, than the above, is when our code
inside our funcঞon runs without error, despite the input being incorrect. If this happens, the
funcঞon may output garbage that gets fed into other funcঞons, and tracking down the bug
may become hard.

As usuaѴ, input checking is a trade off between ঞme spent wriঞng it and further progress, and
once again, I usuaѴѴy impѴement such steps at the “producঞon codeĿ or “this is going in the
paperĿ stage.

Our onѴy input to our sampѴe funcঞon here is a string path to a Ѵocaঞon, so there are two
things we can check: first, that it is a string, and second, that the Ѵocaঞon exists on the
computer of reference. Both of these wouѴd end up flagging errors Ѵater Őwhen we tried to use
aUVToR[ŝs Ѵoading funcঞon using RaVh , but Ѵet’s for compѴeteness do it ourseѴves:

imRoTV oU
def load_diTecVoT[_imageU(RaVh):
 '''
 LoadU a diTecVoT['U YoTVh of imageU inVo conXenienV
 UVoTage WniVU. ReSWiTeU aUVToR[.io.fiVU.
 NoVe: All ImageU in diTecVoT[mWUV be of Uame UhaRe.

 PaTameVeTU

 RaVh: UVT
 RaVh Vo Vhe diTecVoT[[oW YiUh Vo load, aU a UVTing.

 ReVWTnU

 image_UVack: aTTa[_like
 A UVack of all imageU conVained in Vhe diTecVoT[.
 ATTa[of UhaRe (N,X,Y) YheTe N iU Vhe nWmbeT of imageU,
 and X,Y aTe Vhe dimenUionU of each image.
 image_dicV: dicV
 A dicVionaT[conVaining headeTU foT each image, Vhe ke[U
 aTe Vhe Uame aU Vhe indiceU of Vhe coTTeURonding
 image in Vhe image_UVack
 '''
 if noV iUinUVance(RaVh, UVT):
 TaiUe AUUeTVionETToT('PaVh mWUV be a UVTing.')
 if oU.RaVh.iUdiT(RaVh) == FalUe:

 TaiUe OSETToT('PaVh doeU noV RoinV Vo a Xalid locaVion.')
 TeVWTn

My two checks have now been impѴemented. First, we check that RaVh is an instance of type
string Ō if it isn’t, we raise an error. I’ѴѴ taѴk more about defining errors, raising them, etc., Ѵater,
but AUUeTVionETToT and OSETToT are two that are buiѴt into python which mean “I am
asserঞng a variabѴe be a certain way and it isn’tĿ and “You’ve messed up on something reѴated
to input and output Ѵocaঞons on your computerĿ. The difference is superficiaѴ, it just further
informs the user Őor uső of what type of error occured in our code, which our error message
we’ve added aѴso does.

You’ѴѴ aѴso noঞce I’ve changed the RaUU into a TeVWTn . Returning is what we do at the end of
a “finishedĿ funcঞon, where we take vaѴues caѴcuѴated in the funcঞon and “returnĿ them to the
overaѴѴ code Őmore on this in a secő.

Let’s test my inputŊchecking:

cWUVom_RaVh = 2
load_diTecVoT[_imageU(cWUVom_RaVh)

AUUeTVionETToT TTaceback (moUV TecenV call laUV)

<iR[Vhon-inRWV-27-0d9b0ed7f57c> in <modWle>
 1 cWUVom_RaVh = 2
----> 2 load_diTecVoT[_imageU(cWUVom_RaVh)

<iR[Vhon-inRWV-26-f6f134fb9056> in load_diTecVoT[_imageU(RaVh)
 20 '''
 21 if noV iUinUVance(RaVh, UVT):
---> 22 TaiUe AUUeTVionETToT('PaVh mWUV be a UVTing.')
 23 if oU.RaVh.iUdiT(RaVh) == FalUe:
 24 TaiUe OSETToT('PaVh doeU noV RoinV Vo a Xalid locaVion.')

AUUeTVionETToT: PaVh mWUV be a UVTing.

Great! We’ve shown that my AUUeTVionETToT correctѴy triggered when cWUVom_RaVh was
not given as a string.

cWUVom_RaVh = '`/FoldeTThaVDoeUnVEZiUV/oVheT_foldeT/'
load_diTecVoT[_imageU(cWUVom_RaVh)

OSETToT TTaceback (moUV TecenV call laUV)

<iR[Vhon-inRWV-28-9f0c7a13997b> in <modWle>
 1 cWUVom_RaVh = '`/FoldeTThaVDoeUnVEZiUV/oVheT_foldeT/'
----> 2 load_diTecVoT[_imageU(cWUVom_RaVh)

<iR[Vhon-inRWV-26-f6f134fb9056> in load_diTecVoT[_imageU(RaVh)
 22 TaiUe AUUeTVionETToT('PaVh mWUV be a UVTing.')
 23 if oU.RaVh.iUdiT(RaVh) == FalUe:
---> 24 TaiUe OSETToT('PaVh doeU noV RoinV Vo a Xalid locaVion.')
 25 TeVWTn

OSETToT: PaVh doeU noV RoinV Vo a Xalid locaVion.

Great! This ঞme, I made up something that is indeed a string, but that isn’t a Ѵocaঞon on my
computer, and my check, that oU.RaVh.iUdiT() is TTWe , threw an error.

As a finaѴ check, Ѵet’s put in a string that shouѴd work Őa reaѴ Ѵocaঞonő:

Teal_RaVh = '/UUeTU/'
load_diTecVoT[_imageU(Teal_RaVh)

And, as expected, we see that our reaѴ path throws no errors.

We’re now ready to actuaѴѴy write the funcঞon itseѴf! I know that seemed Ѵike a Ѵot of upŊfront
effort, but noঞce that the number of Ѵines isn’t that Ѵarge ŐespeciaѴѴy if we had a oneŊѴiner
documentaঞonő, and over ঞme, you’ѴѴ be abѴe to add input checking quickѴy and efficientѴy. It’s
aѴso aѴways good to remember you can add documentaঞon and input checking a[er the fact
Őbut not too Ѵong a[erő!

2.3 LocaѴ Scope and GѴobaѴ Scope

Before we go through the actuaѴ detaiѴs of this parঞcuѴar exampѴe funcঞon, I want to taѴk
about the concept of scope within our Python programs. So far, when working with scripts in
which every Ѵine is a decѴaraঞon or caѴcuѴaঞon or Ѵoop or condiঞonaѴ, everything exists within
what is known as the gѴobaѴ scope of the code. That simpѴy means that if I were to run my
script in the interpreter, aѴѴ the variabѴes Őat Ѵeast, their finaѴ stateső wouѴd be accesibѴe to me in
the interpreter, and I can use any previousѴy defined variabѴe anywhere I want in my code.

One caveat to this is iterators, which are created when you set up, e.g., a foT-looR. In this
case it’s even more confusing: the finaѲ iterator wiѴѴ sঞѴѴ be around a[er the Ѵoop, e.g.,

foT i in Tange(10):
 conVinWe

i

9

We see that I wrote a foT-looR which did nothing but iterate over a Ѵist
[0,1,2,3,4,5,6,7,8,9] . But Ѵater, I caѴѴed the variabѴe “iĿ and it was sঞѴѴ Ɩ, its Ѵast vaѴue from
the Ѵoop.

That seems a Ѵi�Ѵe sketchy, and it kind of is. It is part of the reason we use standard iterator
variabѴes Ѵike i, j, k in our Ѵoops… because they’re Ѵess ѴikeѴy to end up overwriঞng an
important variabѴe we want to use Ѵater. Of course, if I set up a new Ѵoop using i , it wiѴѴ be
properѴy overwri�en at the start of the Ѵoop.

So, as I’ve described it, aѴѴ our variabѴes are aѴѴ swimming together in the big pooѴ that is gѴobaѴ
scope, and any variabѴe can by accessed anywhere.

That’s bad.

Let me reŊiterate. WhiѴe that way of being, which we get used to in basic scripঞng, is
extremeѴy convenient, it is aѴso dangerous, and it makes tracking down bugs Őin which one

variabѴe gets set or caѴcuѴated wrong and this issue propogates through the code into our finaѴ
answerő extremeѲy difficuѲt.

If you’ve ever tried to type an absurdѴy compѴicated expression into mathemaঞca Őor WoѴfram
AѴphaő, you’ve seen this effect. Garbage answer comes out, but the onѴy way to figure out why
is to start breaking down the terms of the expression into smaѴѴ pieces evaѴuated separateѴy.
This is exactѴy what we want to do with our code, and funcঞons give us the abiѴity to do this.

Funcঞons have what is caѴѴed ѴocaѴ scope. This means that any variabѴe defined within a
funcঞon stays within that funcࢼon. It can’t be accessed from outside the funcঞon, it can’t be
messed with or overwri�en by any code outside the funcঞon, it’s compѴeteѴy waѴѴed off and
isoѴated. Once we take a string and input it to our sampѴe funcঞon here as RaVh , for the
purposes of the inside of the funcঞon, path is totaѴѴy isoѴated.

A Huge Caveat. LocaѴ scope is not two direcࢼonaѲ. Anything accessibѴe in the gѲobaѲ scope is
aѴso accessibѴe in the ѲocaѲ scope of a funcঞon. It is the reverse that isn’t true. Observe:

a = 3
b = 5
def fWnc(c,d):
 TeVWTn a+b+c+d

fWnc(1,2)

11

WeѴp. My funcঞon onѴy takes Ƒ arguments, c and d . But inside the funcঞon, I wantonѲy
disregard ѲocaѲ scope and uঞѴize a and b as weѴѴ. As suggested by the name, gѴobaѴ scope is
truѴy gѴobaѴ, even in funcঞons.

This seems to defy our desire to isoѴate smaѴѴ units of code ŐsingѴe chunks of caѴcuѴaঞonső into
different, separated funcঞons. So what’s the soѴuঞon?

SoѴuঞon number Ɛ: SimpѴy never caѴѴ variabѴes inside funcঞons that aren’t either inputs to the
funcঞon or created within the funcঞon. For exampѴe:

a,b = 3,5
def fWnc(a,b,c,d):

 TeVWTn a+b+c+d

fWnc(1,2)

T[ReETToT TTaceback (moUV TecenV call laUV)

<iR[Vhon-inRWV-43-00c7caa4d412> in <modWle>
 3 TeVWTn a+b+c+d
 4
----> 5 fWnc(1,2)

T[ReETToT: fWnc() miUUing 2 TeSWiTed RoUiVional aTgWmenVU: 'c' and 'd'

By specifying that the variabѴes we caѴѴ “aĿ and “bĿ in our funcঞon are posiঞonaѴ arguments,
we have overwri�en the gѴobaѴ scope and toѴd our funcঞon that the “aĿ and “bĿ it needs to use
are ones suppѴied by the user. Now,

fWnc(a,b,1,2)

11

returns the same vaѴue, but I knew exactѴy what was going on aѴong the way.

Another soѴuঞon, of course, wouѴd be to have no variabѴes in the gѴobaѴ scope at aѴѴ, that is,
have everything isoѴated into funcঞons. But this is typicaѴѴy impracঞcaѴ, most generaѴ use
scripts we write wiѴѴ have at Ѵeast some code hanging in the gѴobaѴ name space. So soѴuঞon
number Ɛ is the most soѴid way to ensure you aren’t Ѵeমng bugs “ѴeakĿ into your funcঞons.

2.4 But Wait, Didn’t Debugging Just Get Harder?

If you’ve spent any ঞme wriঞng funcঞons, you may have run into the foѴѴowing issue: You
write a simpѴe, but maybe ƐƔ Ѵine funcঞon to do some task. You run it, and there’s a bug ŋ not

an error raised, but the output is weird. But unѴike in your script, you can’t just Ѵook at the
intermediate variabѴes in the caѴcuѴaঞon anymore, because they were in the funcঞon!

def m[_fWnc():
 XaT = 1
 XaT2 = 3
 TeVWTn XaT + XaT2

RTinV(XaT)

NameETToT TTaceback (moUV TecenV call laUV)

<iR[Vhon-inRWV-46-2ea387ab95ff> in <modWle>
----> 1 RTinV(XaT)

NameETToT: name 'XaT' iU noV defined

When we run commands in the ipython interpreter, or jupyter notebook, or wherever, we are
in the gѲobaѲ namespace, so we can’t get to the variabѴes created inside the funcঞon. This o[en
Ѵeads to the inserঞon of a muѴঞtude of RTinV statements into our funcঞons to check
intermediate steps, but even this isn’t ideaѴ; someঞmes we need to mess with those variabѴes,
interrogate their shape, or Ѵength, or other properঞes.

There are two ways to go with this. When you’re starঞng out, I recommend pѴay tesঞng your
code outside of funcࢼons in the gѴobaѴ namespace, tweaking and bugfixing unঞѴ things work.
Then, when you’re saঞsfied, copy that code into a funcঞon. Once you get more comfortabѴe
with high ѴeveѴ programming, there are actuaѴѴy industry soѴuঞons, e.g., so[ware that Ѵets you
actuaѴѴy “jump intoĿ the namespace of a funcঞon and muck around. This is awesome, but not
necessary when you have the ঞme and space to just test the code going into funcঞons in a
script environment or jupyter notebook ceѴѴ first.

Enough jabbering! Let’s get back to our exampѴe funcঞon. As I noted earѴier, aUVToR[has a
moduѴe that Ѵets us Ѵoad images in the fiVU format easiѴy. If you’re interested in Ѵearning more

about the ins and outs of these methods, check out the secঞon on aUVToR[as weѴѴ as their
own website, which has soѴid documentaঞon. For now, I’ѴѴ just use their tooѴ:

fTom glob imRoTV glob
fTom aUVToR[.io imRoTV fiVU

def load_diTecVoT[_imageU(RaVh):
 '''
 LoadU a diTecVoT['U YoTVh of imageU inVo conXenienV UVoTage WniVU.
 ReSWiTeU aUVToR[.io.fiVU, glob.
 NoVe: All ImageU in diTecVoT[mWUV be of Uame UhaRe.

 PaTameVeTU

 RaVh: UVT
 RaVh Vo Vhe diTecVoT[[oW YiUh Vo load, aU a UVTing.

 ReVWTnU

 image_UVack: aTTa[_like
 A UVack of all imageU conVained in Vhe diTecVoT[.
 ATTa[of UhaRe (N,X,Y) YheTe N iU Vhe nWmbeT of imageU,
 and X,Y aTe Vhe dimenUionU of each image.
 image_dicV: dicV
 A dicVionaT[conVaining headeTU foT each image, Vhe ke[U
 aTe Vhe Uame aU Vhe indiceU of Vhe coTTeURonding
 image in Vhe image_UVack
 '''
 if noV iUinUVance(RaVh, UVT):
 TaiUe AUUeTVionETToT('PaVh mWUV be a UVTing.')
 if oU.RaVh.iUdiT(RaVh) == FalUe:
 TaiUe OSETToT('PaVh doeU noV RoinV Vo a Xalid locaVion.')

 fileU_in_diT = glob(RaVh)
 image_UVack = []
 headeT_UVack =]_
 foT i,f in enWmeTaVe(fileU_in_diT):
 YiVh fiVU.oRen(f) aU HDU:
 image_UVack.aRRend(HDU[0].daVa)
 headeT_UVack[i] = HDU[0].headeT

 image_UVack = nR.aTTa[(image_UVack)
 TeVWTn image_UVack, headeT_UVack

The exact detaiѴs of the above code aren’t super important, as Ѵong as you see and understand
how this is now aѴѴ wrapped into the funcঞon and the two quanঞঞes of interest are output.
You may noঞce some assumpঞons buiѴt into the code, such as that the image and header of
the fits fiѴe are stored in the Əth extension of the HDU Ődon’t worry if that means nothing to
you right nowő. For astronomicaѴ data from teѴescopes, this is aѴmost aѴways the case, but this
wouѴd be an exampѴe of personaѴ code in which we knew the format of the fits images we
were trying to Ѵoad and thus which extension to choose. It’s a usefuѴ aside, however, to
consider that if we were wriঞng generaѴ use code for a pipeѴine that wouѴd see many different
fits fiѴes of different internaѴ storage systems, we’d need more robust code for dynamicaѴѴy
Ѵoading them this way.

2.5 Chaining Funcঞons Together

Once you start wriঞng your code into funcঞons, you’ѴѴ find that the output of funcঞon one
tends to become the input of funcঞon two. For exampѴe, I couѴd write a new funcঞon:

def median_image(image_UVack):
 '''
 TakeU a UVack of imageU and TeVWTnU Vhe median image.
 PaTameVeTU

 image_UVack: aTTa[_like
 UVack of imageU, fiTUV dimenUion being image indeZ.
 ReVWTnU

 median_image: aTTa[_like
 Uingle image of Vhe median of Vhe inRWV imageU
 '''
 median_image = nR.median(image_UVack,aZiU=0)
 TeVWTn median_image

Now, if I wanted to median the first three images in my fuѴѴ stack, I couѴd feed the foѴѴowing

image_UVack = load_diTecVoT[_imageU(image_RaVh)
fiTUV_3 = median_image(image_UVack[0:2])

I again want to emphasize that we can caѴѴ our variabѴes whatever outside the funcঞons and
then feed them in. O[en though, the names end up being simiѴar or the same.

You might be wondering why you wouѴd write a funcঞon that had a singѴe Ѵine of code as its
caѴcuѴaঞon. The short answer is, you wouѴdn’t ŋ my median_image() funcঞon adds so Ѵi�Ѵe
beyond your generaѴ use of nR.median() that it isn’t worth wriঞng. But usuaѴѴy in
Astronomy… we don’t just want a median. We want… say… a sigma cѴipped mean. Now that
wouѴd take a few Ѵines to accompѴish, and is probabѴy worth wriঞng a funcঞon for.

As a generaѴ guideѴine, I tend to put something in a funcঞon if it

Does a singѴe “taskĿ or “unitĿ of my program
Has more then ŜƐƏ Ѵines OR
Is onѴy ƒŊƔ Ѵines but is used SO DANG OFTEN in my code that wriঞng one Ѵine instead
of ƒ every ঞme saves me work.

2.ѵ The Concept of Main()

So far, we’ve discussed the way one formats funcঞons, and how to take what’s output from a
funcঞon Ői.e., Ѵisted in the return statementő and save it to a new variabѴe Ősee the above
exampѴeő, which can then be put into other funcঞons, etc. How does this actuaѴѴy flow in a
more major script’s workflow?

One of the simpѴest ways is through a main() funcঞon. Let’s say I’ve wri�en four funcঞons
which do the foѴѴowing:

Load the images from a directory into a stack
CѴeaned each image somehow Őmaybe removing cosmic rays or bad pixeѴső
AѴigned the images Őwhich were, say, ditheredő
Created “coaddsĿ of the images by stacking them in various ways Őmean, cѴipped mean,
median, weighted meanő.

Each funcঞon assumes generaѴ input and has generaѴ output. To make it specific, I couѴd write
a funcঞon, which we o[en simpѴy caѴѴ main() , Ѵike this:

def main(image_diT,cleaning_ke[YoTd,alignmenV_ke[YoTd,coadd_ke[YoTd):
 image_UVack, headeT_UVack = load_diTecVoT[_imageU(image_diT)
 cleaned_imageU = clean_imageU(image_UVack,cleaning_ke[YoTd)
 aligned_imageU = align_imageU(cleaned_imageU,alignmenV_ke[YoTd)
 coadded_imageU = coadd_imageU(aligned_imageU,coadd_ke[YoTd)
 TeVWTn coadded_imageU

This wouѴd usuaѴѴy be the Ѵast funcঞon defined in our code, and we can see that we here
indicate that main takes in aѴѴ the info needed to run aѴѴ the funcঞons properѴy Őmore on this in
a secondő. Assuming that aѴѴ works, we couѴd then open a terminaѴ, run our python script, and
then simpѴy run something Ѵike final_oWVRWV = main(inRWVU) funcঞon to run everything in
sequence and get the finaѴ output.

But wait, it gets even easier than that! At the bo�om of our Python script, beѴow the main
and other funcঞons, we can add the foѴѴowing:

if __name__ == '__main__':
 main(mage_diT,cleaning_ke[YoTd,alignmenV_ke[YoTd,coadd_ke[YoTd)

What is this? The above is a condiঞonaѴ statement that checks whether our current Python
fiѴe has been run. EssenঞaѴѴy, when I open an ipython interpreter and type TWn m[UcTiRV.R[,
Python automaঞcaѴѴy sets a “secret variabѴeĿ caѴѴed __name__ to __main__ , because the
script is being run. You can put whatever you want inside this bѴock, which is onѴy True if you
run the script enঞreѴy. In this case I’ve chosen to put a funcঞon caѴѴ to my own main()
funcঞon inside. Now, if I open the interpreter and type

TWn m[UcTiRV.R[

It wiѴѴ execute my main() caѴѴ automaঞcaѴѴy, without me having to type in main(blah,blah)
into the terminaѴ myseѴf.

You may be wondering why you wouѴdn’t simpѴy have a caѴѴ of your main funcঞon at the
bo�om of your script, without this weird condiঞonaѴ. And you’re right: If you did that, the
same thing wouѴd happen, and running the script wouѴd then run your main caѴѴ, hence

running aѴѴ your funcঞons. But something we haven’t taѴked about yet, but wiѴѴ taѴk about in
detaiѲ soon, is the idea of imRoTVing your own funcঞons between python fiѴes. When you
begin doing this, it becomes considerabѴy more important to have actuaѴ execuঞons tucked
away inside these condiঞonaѴs that onѴy run if our target fiѴe is run directѴy in the interpreter,
rather than imported into another script.

2.7 FѴexibѴe Funcঞons: non-posiঞonaѴ arguments

Thus far, our discussion of the definiঞon of funcঞons has onѴy incѴuded what are known as
RoUiVional arguments. When I define a simpѴe funcঞon Ѵike the foѴѴowing:

def fWnc(a,b,c,d):
 TeVWTn (a+b-c)*d

You can see cѴearѴy that the posiࢼon of the four variabѴes in the argument Ѵist ma�ers.
Whatever the first number I suppѴy is wiѴѴ be deemed a , the second number I feed wiѴѴ be b ,
and so on. And this affects the output now, as an order of operaঞons has been estabѴished
Őrather than a simpѴe sumő. If I flip around the order of the numbers I feed in, I’ѴѴ cѴearѴy get a
different answer.

There are severaѴ other forms of argument, beyond posiঞonaѴ. The first is an opࢼonaѲ, defauѲt,
or key word argument Őthe three are used interchangeabѴyő. This is extremeѴy usefuѴ when we
want to obey the goѴden scope ruѴe above about not using any variabѴes not asked for as
arguments, but we do know that this vaѴue o[en takes a singѴe vaѴue.

To give a concrete exampѴe, Ѵet’s say I want to caѴcuѴate the sine of some vaѴues in my code,
and usuaѲѲy the angѴes I’m working with are in radians Őwhich is what nR.Uin() requireső but
someࢼmes they’re in degrees. I can write a quick wrapper for my sine funcঞon as foѴѴows:

def m[_Uin(Z,WniVU='Tadian'):
 if WniVU=='Tadian':
 TeVWTn nR.Uin(Z)
 elif WniVU =='deg':
 neY_Z = Z * nR.Ri / 180.0
 TeVWTn nR.Uin(neY_Z)

The way this works is that my funcঞon assumes WniVU to be “radiansĿ unѴess otherwise
specified:

m[_Uin(nR.Ri)

1.2246467991473532e-16

We see this returns Ə Őto computer precisionő as expected. However, if I specify different units:

m[_Uin(90,WniVU='deg')

1.0

The code knew to convert my degrees into radians and then return the nR.Uin() vaѴue.

A cooѴ thing about these types of arguments is that because they are Ѵinked to keywords Őe.g.,
‘deg’ was Ѵinked to the variabѴe WniVU ő, they are not posiঞonaѴ. A great exampѴe of this comes
from the maVRloVlib Ѵibrary. PѴoমng funcঞons in this Ѵibrary tend to have a bunch of
opঞonaѴ arguments with defauѴts set, but which you can change. If you use the keyword for
those parameters, their order doesn’t ma�er:

imRoTV maVRloVlib.R[RloV aU RlV
Z = nR.aTange(5)
[= Z**2

RlV.RloV(Z,[,lU='-',coloT='Ted',mU=5,label='RoinVU',alRha=0.9)
RlV.legend()

<maVRloVlib.legend.Legend aV 0Z7f9981023610>

Now see what happens if I change around the order of the non posiঞonaѴ arguments Őfor
RlV.RloV() , the onѴy posiঞonaѴ arguments are x and y, so these must aѴways be suppѴied as
the first two argumentső:

RlV.RloV(Z,[,alRha=0.9,coloT='Ted',mU=5,lU='-',label='RoinVU')
RlV.legend()

<maVRloVlib.legend.Legend aV 0Z7f9981f00ca0>

We get exactѴy the same pѴot.

One important note about keyword arguments is that, of course, they aѴѴ must be suppѴied
a[er the posiঞonaѴ arguments. For exampѴe, if I ran

RlV.RloV(Z,alRha=0.9,[,coloT='Ted',mU=5,lU='-',label='RoinVU')

 File "<iR[Vhon-inRWV-58-1fd2328cc66e>", line 1
 RlV.RloV(Z,alRha=0.9,[,coloT='Ted',mU=5,lU='-',label='RoinVU')
 ^
S[nVaZETToT: RoUiVional aTgWmenV folloYU ke[YoTd aTgWmenV

Python heѴpfuѴѴy teѴѴs me that a posiঞonaѴ argument Őone not assigned to a keywordő came
a[er a keyword argument, and this is a noŊno. In short, if you define a funcঞon with three
posiঞonaѴ arguments and four keyword arguments, it might Ѵook Ѵike:

def fWnc_aTgU(Z,[,\,a=1,b=25,c=None,d=FalUe):
 if d:
 TeVWTn Z+[+\
 elif c iU noV None:
 RTinV('YoYÛ')
 elUe:
 TeVWTn Z+b

The above funcঞon is of course nonsensicaѴ, but make sure you understand the code flow that
occurs Őtry it out yourseѴf! Run the funcঞon whiѴe onѴy suppѴying Z,[,\ vaѴues, then whiѴe
messing with changing d from FalUe to TTWe or c to anything.

2.Ѷ Even more flexibiѴity! *args and **kwargs

What if a situaঞon arises where we want our funcঞon to accept an unѴimited number of
arguments? To give a simpѴe exampѴe: What if I want to write a UWm() funcঞon that sums up
as many numbers as you put into it? Of course, we couѴd write a funcঞon that takes a singѴe
argument as a Ѵist or array, but for the sake of this exampѴe, how wouѴd we aѴѴow the user to
enter as many numbers as possibѴe?

The answer is with the beauty of *aTgU . Let’s take our sum exampѴe:

def m[UWm(a,b,*aTgU):
 TWnning_UWm = a+b
 foT i in aTgU:

 TWnning_UWm+=i
 TeVWTn TWnning_UWm

m[UWm(1,2)

3

m[UWm(1,2,3,4,5,6)

21

CooѴ, right?

The concept is actuaѴѴy rather simpѴe. When we add *aTgU to the end of our Ѵist of arguments
for our funcঞon, it teѴѴs Python to take any addiঞonaѴ suppѴied arguments and store them in a
Ѵist which inside our funcঞon wiѴѴ be known as aTgU . I can then do things with that Ѵist Őin the
exampѴe, I iterated through them and added them to the iniঞaѴ sum of the posiঞonaѴ
arguments. Of course, since they’re aѴready a Ѵist, a faster method wouѴd be:

def m[UWm(a,b,*aTgU):
 TeVWTn a+b+nR.UWm(aTgU)

where by faster I mean both in Ѵines of code and computaঞonaѴѴy Ővector sums over an array
or Ѵist are aѴways faster than a forŊѴoop; more on that in the chapter on opঞmizaঞonő.

But what if the extra arguments we want to accept aren’t in just any order, and we want to
track that somehow? NaturaѴѴy, the soѴuঞon is simiѴar, but instead we’ѴѴ use the signifier
**kYaTgU . This teѴѴs our funcঞon to accept any number of addiঞonaѴ keyword arguments, Ѵike
the ones we’ve been discussing above. For exampѴe:

def RTeVV[_RTinV(UVTing,**kYaTgU):
 RTinV(UVTing)

My RTeVV[_RTinV() funcঞon now requires a string input… but is happy to accept any other
kwargs I throw at it:

RTeVV[_RTinV('Hello, YoTldÛ',UWbVeZV='IXe had m[moTning coffe',eneTg[_leXel=5)

Hello, YoTldÛ

What happened to those extra keyword arguments? Like the exampѴe for *aTgU , they got
stored, but this ঞme into a dicঞonary of name kYaTgU , and can be accessed in the funcঞon.
Let’s use one:

def RTeVV[_RTinV(UVTing,**kYaTgU):
 RTinV(UVTing)
 if 'UeR' in kYaTgU.ke[U():
 RTinV(kYaTgU['UeR'])

RTeVV[_RTinV('Hello, WoTldÛ',UeR='----------------')

Hello, WoTldÛ

Our funcঞon is sঞѴѴ agnosঞc to any extra keywords suppѴied. But, IF one of those keyword
args happens to be UeR , my funcঞon does something speciaѴ: it yanks the vaѴue of that key
from the internaѴ dicঞonary of kwargs and in this case prints it.

The above exampѴes provide a base ѴeveѴ of use… but may not seem that exciঞng. Why not
just make UeR an opঞonaѴ keyword of my RTeVV[_RTinV() funcঞon?

Once again, the simpѴicity of the exampѴe beѴays the true use: threading extra arguments
through muѴঞpѴe funcঞons. Let’s say I have a main() funcঞon in my script, which onѴy take a
few main parameters that set up my run. And Ѵet’s say that buried inside my main() funcঞon
is a funcঞon caѴѴ to RTeVV[_RTinV() which teѴѴs me my code finished, say, aѴigning the
images. That wouѴd Ѵook Ѵike this:

def main(image_diT,cleaning_ke[YoTd,alignmenV_ke[YoTd,coadd_ke[YoTd):
 image_UVack, headeT_UVack = load_diTecVoT[_imageU(image_diT)
 cleaned_imageU = clean_imageU(image_UVack,cleaning_ke[YoTd)
 aligned_imageU = align_imageU(cleaned_imageU,alignmenV_ke[YoTd)
 RTeVV[_RTinV('FiniUhed Aligning ImageU, moXing on Vo coaddU.')
 coadded_imageU = coadd_imageU(aligned_imageU,coadd_ke[YoTd)
 TeVWTn coadded_imageU

The Above is a pre�y common way to track our code progress in academic code. But you may
noঞce an issue ŋ even if I setup a keyword argument in RTeVV[_RTinV() which takes in the
separator, i.e.,

def RTeVV[_RTinV(UVTing,UeR=None):
 RTinV(UVTing)
 if UeR iU noV None:
 RTinV(UeR)

RTeVV[_RTinV('helloÛ')

helloÛ

RTeVV[_RTinV('helloÛ',UeR='------')

helloÛ

The probѴem is, my main() funcঞon doesn’t have an argument, posiঞonaѴ or otherwise, that
takes in UeR . You can see that if every funcঞon inside main() has severaѴ opঞonaѴ
arguments, and we wanted the abiѴity to adjust them from a funcঞon caѴѴ of main() , we’d
have to add aѴѴ of those arguments as opঞonaѴ arguments of main() as weѴѴ. That’s both
messy and a huge pain. Instead, we can do the foѴѴowing:

def main(image_diT,cleaning_ke[YoTd,alignmenV_ke[YoTd,coadd_ke[YoTd,**kYaTgU):
 image_UVack, headeT_UVack = load_diTecVoT[_imageU(image_diT,**kYaTgU)
 cleaned_imageU = clean_imageU(image_UVack,cleaning_ke[YoTd,**kYaTgU)
 aligned_imageU = align_imageU(cleaned_imageU,alignmenV_ke[YoTd,**kYaTgU)
 RTeVV[_RTinV('FiniUhed Aligning ImageU, moXing on Vo coaddU.',**kYaTgU)
 coadded_imageU = coadd_imageU(aligned_imageU,coadd_ke[YoTd,**kYaTgU)
 TeVWTn coadded_imageU

The above necessitates that each interior funcঞon have been defined to aѴѴow **kYaTgU to
be input Őthe way pre�y print did in Ѵine ѵƖő. But what wiѴѴ happen now is I can run main()
and feed in any addiঞonaѴ keyword arguments for any of the interior funcঞons and every
funcঞon wiѴѴ be fed the fuѴѴ set, but can pick out the ones reѴevant to it using a if ___ in
kYaTgU.ke[U() type mechanism.

You may sense a danger here, which is that muѴঞpѴe interior funcঞons of yours may have some
check Ѵike the one above that checks for the same keyword argument. That wouѴd be bad, if
the input keyword arg was onѴy meant to refer to one of the interior funcঞons.

The trick then, is to have, for exampѴe, RTeVV[_RTinV() ŝŝs check Ѵook in the kwarg dicঞonary
for something caѴѴed RTeVV[_RTinV_UeR instead. At the outer Ѵayer, you wouѴd then add that
if you wanted it to get to your RTeVV[_RTinV() funcঞon.

One addiঞonaѴ note on the formaমng: the asterisk, “ * Ŀ Őor “ ** Ŀő has two meanings as I’ve
used them throughout codes above: “packĿ, and “unpackĿ. When you use the “ ** Ŀ in your
funcࢼon definiࢼon, it is teѴѴing your funcঞon to take aѴѴ addiঞonaѴ keyword arguments and their
vaѴues, and pack them into a dicঞonary caѴѴed kYaTgU accesibѴe within the funcঞon. However,
in the Ѵast funcঞon above, I’ve done exactѴy that in the definiঞon Ѵine of main() . Hence, some
dicঞonary caѴѴed kYaTgU was created and I couѴd access it as foѴѴows:

def main(image_diT,cleaning_ke[YoTd,alignmenV_ke[YoTd,coadd_ke[YoTd,**kYaTgU):

 RTinV(kYaTgU)

 image_UVack, headeT_UVack = load_diTecVoT[_imageU(image_diT)
 cleaned_imageU = clean_imageU(image_UVack,cleaning_ke[YoTd)
 aligned_imageU = align_imageU(cleaned_imageU,alignmenV_ke[YoTd)
 RTeVV[_RTinV('FiniUhed Aligning ImageU, moXing on Vo coaddU.')
 coadded_imageU = coadd_imageU(aligned_imageU,coadd_ke[YoTd)
 TeVWTn coadded_imageU

For cѴarity, I’ve shown that a reguѴar dicঞonary caѴѴed kYaTgU exists within main() due to the
**kYaTgU in its definiঞon ŋ regardѴess of what I do with it.

So why the “ ** Ŀ in the funcঞons beѴow?

The second use of that symboѴ is unpacking. When you use “ * Ŀ or “ ** Ŀ in a funcঞon caѲѲ,
rather than definiঞon, it assumes that the foѴѴowing word Őargs or kwargső refers to a Ѵist or
dicঞonary, and actuaѴѴy unpacks them into separate inputs to the funcঞon, whether they be
just vaѴues ŐѴike in our m[_UWm() exampѴe, or whether they be keyword arguments and their
vaѴues via a kYaTg=XalWe,kYaTg2=XalWe2 type system.

This expѴains why I actuaѴѴy used the “ ** Ŀ in both the definiঞon of main() Őto get the extra
kwargs in, and pack them into a dicঞonaryő, as weѴѴ as in the caѴѴs to other previousѴy defined
funcঞons, to unpack that dicঞonary back into funcঞon keyword arguments passed into the
funcঞons.

The use of args and kwargs is definiteѴy intermediate in skiѴѴ progression Ō your codes may not
need it right away. But as they grow more compѴex, it is good to be aware of this highѴy
flexibѴe way of deaѴing with funcঞon inputs, because at some point you’ѴѴ have a code that is
be�er off for using it.

2.9 Tesঞng Funcঞon Outputs: Unit Tesঞng

EarѴier, we discussed the tesঞng of inputs to your funcঞons to ensure proper data types or
any other restricঞon your funcঞon needs to produce sensibѴe resuѴts. What about the output?

When we write funcঞons, the goaѴ is to take a Ѵarge process ŐѴike reducing a set of data from
raw images to science spectraő and reduce it into smaѴѴ, repeatabѴe, singѴeŊtask chunks so we
can evaѴuate that each step is performing properѴy and independentѴy. During the
deveѴopment of such a code, and such funcঞons, you ѴikeѴy test the funcঞons outputs
yourseѴf, manuaѴѴy Ō i.e., put in some sampѴe data, make sure the output of the funcঞon makes
sense.

The probѴem is that code Ѵives and breathes. A[er inserঞng your code into a Ѵarger framework,
you’ѴѴ find you have to go back and tweak that funcঞon, add an extra input or output, modify
one part of the caѴcuѴaঞon. A more advanced, but vaѴuabѴe way to ensure your funcঞons sঞѴѴ
do what you want them to is by impѴemenঞng what are known as unit tests.

Unit tests are extra pieces of code that throw sampѴe probѴems with known outcomes at each
of your producঞon funcঞons and ensure that the funcঞons are operaঞng as expected. For
Ѵarge scaѴe coѴѴaboraঞons with intense pipeѴines, the amount of code that exists in the unit
tests may even exceed, or vastѴy exceed, the amount of producঞon code actuaѴѴy doing the
science! But it is these tests that make the scienঞsts confident in every step of their pipeѴine,
even as it evoѴves and changes over ঞme.

WhiѴe that sounds daunঞng, impѴemenঞng unit tesঞng is Ѵess chaѴѴening than it sounds. There
are severaѴ frameworks that handѴe the unit tesঞng for you. In this exampѴe, we’ѴѴ be using
R[VeUV .

P[VeUV is RiR instaѴѴabѴe, and simpѴe to use. SimpѴy create a fiѴe that starts with VeUV_ or
ends in _VeUV.R[somewhere that you can access the funcঞons of interest Ősay, in the same
directory as your code ŋ Ѵater we’ѴѴ taѴk about how to put them in a separate tests directoryő.
Assuming you’ve done this, inside your Python fiѴe for the test, you’ѴѴ want to import R[VeUV
as weѴѴ as your funcঞons. For exampѴe, If we had aѴѴ the funcঞons discussed in this chapter in
one python fiѴe caѴѴed WViliV[_fWncVionU.R[, then in the first Ѵine of my
VeUV_WViliVieU.R[fiѴe I’d have

imRoTV R[VeUV
fTom WViliV[_fWncVionU imRoTV *

where here I’m simpѴy imporঞng aѴѴ the funcঞons we wouѴd’ve defined.

Next, we want to define some tests. The basic nature of defining a test is to create a funcঞon
which runs your producঞon funcঞon with some set input and asserts that the output is some
known vaѴue. For exampѴe:

def VeUV_load_imageU_fTom_diTecVoT[():
 VeUVing_RaVh = '/Uome_RaVh_I_neXeT_meUU_YiVh_Vo_Uome_VeUV_fiVU_fileU/'
 image_UVack, headeT_dicV = load_diTecVoT[_imageU(VeUVing_RaVh)
 # I knoY VhaV VheTe aTe 7 UamRle imageU in VhaV diTecVoT[,
 # of image dimenUionU 1200 b[2400
 aUUeTV image_UVack.UhaRe == (7,1200,2400)

In the above exampѴe, our funcঞon goes over to some tesঞng images I’ve saved somewhere
for this purpose, and tries to Ѵoad them with my funcঞon. I know things about those images ŋ
for exampѴe their dimensions, and that there are ƕ of them. This means that the expected
shape of the resuѴঞng image stack is Őƕ,ƐƑƏƏ,ƑƓƏƏő. You’re aѴready used to checking
equivaѴencies using == , now we assert this equivaѴency.

BeѴieve it or not, that’s it! At Ѵeast for seমng up a simpѴe test. Now, outside in the reguѴar
terminaѴ, in this directory, simpѴy type

R[VeUV

and the so[ware wiѴѴ

Ѵocate any fiѴes that start with VeUV_ or end in _VeUV.R[in this directory
run any of the funcঞons within
report on successes ŐpѴaces the assert is trueő or faiѴures ŐpѴaces where the asserঞon
faiѴső.

Now, any ঞme we make changes to our load_diTecVoT[_imageU() funcঞon, we can simpѴy
run R[VeUV again to make sure we didn’t break anything. ŐOf course, if we change the number
of outputs, we have to adjust our test to reflect that, etc.ő

There is a Ѳot more to tesঞng ŋ for exampѴe, methods to test many inputs aѴѴ at once, which
we’ѴѴ cover Ѵater in the chapter on buiѴding packages. But feeѴ free to start seমng up some
very simpѴe tests for your research code now!

You might be thinking, wouѴdn’t it be great if the tesঞng code just ran automaঞcaѴѴy any ঞme I
changed my research code? Good news, friend! This is the exact purpose of tooѴs which
provide Conঞnuous Integraঞon (CI). EssenঞaѴѴy, you can set up something simiѴar to R[VeUV
which actuaѴѴy Ѵives in the cѴoud and tests your code everyঞme you push a new commit to
Github Őor your version controѴ service of choiceő. WhiѴe there is no need at the undergraduate
ѴeveѴ to be trying to both host your personaѴ research code on github AND have it
conঞnuousѴy integrated and tested, it’s aѴways good to be aware it is an avaiѴabѴe opঞon once
your code gets compѴex enough to warrant it!

2.10 Wrap Up

Congrats on making it through this chapter! If variabѴes are the atoms of code, funcঞons are
the moѴecuѴes ŋ a criঞcaѴ fundamentaѴ buiѴding bѴock of Ѵarger, more compѴex programs.
Learning how to write them, document them, and test them, is a criঞcaѴ step in becoming a
be�er programmer. Here are the takeaways you shouѴd have at the end of this chapter:

Funcঞons isoѴate chunks of code in a ѲocaѲ namespace which the rest of your code can’t
access, making them siѴos.

Funcঞons take arguments: You can specify posiঞonaѴ, keyword ŐopঞonaѴő, and even
infinite ŐŖargs or ŖŖkwargső arguments.
Inside your funcঞons, you shouѴd onѴy use variabѴes made within the funcঞon or
suppѴied as arguments ŋ no dipping into the gѴobaѴ namespace!
Inside your funcঞons, you shouѴd aѴways add documentaঞon Őof some kindő to estabѴish
the funcঞon’s purpose, its inputs, and its outputs
It’s o[en worth taking a few Ѵines to check that inputs match the requirements of the
funcঞon and raise errors if they don’t.
Funcঞons return things Ō if you don’t incѴude a return statement, the caѴcuѴaঞons in the
funcঞon go away when caѴѴed. We set new variabѴes equaѴ to the funcঞon caѴѴed with
some parameters, and pѴace what we want the funcঞon to output in the TeVWTn
statement Ѵine
Just Ѵike we check the inputs inside a funcঞon, we can check the output of a funcঞon
using unit tesঞng to make sure it is operaঞng as intended.

As aѴways, the best way to get be�er with these concepts is pracঞce! See the associated
chapter excercises for reaѴisঞc astronomy exampѴes of funcঞons you may want or need to
write!

